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DUE DATES FOR EXERCISES  
P9 and P10: Friday, November 9, 2007; 5pm. 
 
 
Comment:  Completing this assignment is a milestone – you’ll find yourself with the amazing ability to 
numerically tackle differential equations that arise throughout physics, engineering, finance, etc.  I’m 
exaggerating a bit, but not by much.  Though there are subtleties and complications that we are not 
considering, the essential methodology is exactly that which you’re discovering here.  Be excited. 
 
 
1  The Runge-Kutta Algorithm 
 
 In the last Programming Assignment we derived and examined the Verlet algorithm for numerically 
solving differential equations, which was valid for equations of the form [ ]ttxGtx ),()( = , e.g. an 
acceleration that depends on position and time, as arises for an undamped oscillator.  Now we’ll consider the 
more general form: 
 [ ]txftx ,)( = , plus knowledge of the initial condition: .)( 00 xtx =   (This doesn’t seem more 
general, but it is, as we’ll see below.) 
 There are many algorithms available for simulating the solution to the above differential equation.  
Just as for the Verlet algorithm, one can derive them by considering the Taylor series expansions of the 
relevant functions.  Different methods employ different truncations and approximations.  One quite powerful 
approach is the Runge-Kutta method1, which we won’t derive2.  In it, one determines the value of x at time 
tn+1, given the known value at time tn, by evaluating functions at times in the interval tn < t < tn+1.  Explicitly: 
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1 The Runge-Kutta algorithm can be shown to have an error that is proportional to (Δt)5.  It is more robust than, for 
example, our Verlet algorithm, which had an error proportional to (Δt)4 and other, simpler algorithms. 
2 Derivations can be found in any textbook on differential equations, for example Elementary Differential Equations and 
Boundary Value Problems by W. E. Boyce and R. C. DiPrima (Wiley, 2004). 



2  Systems of first-order equations 
 
 The above [ ]txftx ,)( = , is a first-order differential equation, meaning that it involves a first 
derivative of x.   We often care about second order equations, e.g. the differential equation 
corresponding to a damped oscillator: xxtx 2

0)( ωγ −−= .  (Writing more generally, [ ]txxhtx ,,)( = , 
where h is some function.)  This and other higher order differential equations can be turned into systems 
of first-order equations by simple substitutions: Just define a new variable, for example xy = .  We 
now have, considering our damped oscillator as an example, two first-order equations: 
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In general, we can apply the Runge-Kutta algorithm to each of these first-order equations (together 
with the initial conditions for x and y).  Explicitly: 
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At first glance this looks like a mess, but notice that the form of most of the terms is very similar.  Moreover, 
the protocol for evaluating Equation 2 to figure out the “next steps” of x and y is straightforward.  We know 
x and y at time tn; we use these and the functions f and g to evaluate Equations 3 and 4 to calculate kn1 and ln1, 
we use these to calculate kn2 and ln2, etc., until we have all the pieces with which to make use of Equation 2. 
 
 
3  The damped oscillator 
 
 For our damped oscillator equation, “g ” is only an explicit function of x and y, not t, i.e. 

),(),,( yxgtyxg = .  Similarly, “f ” is only a function of y, i.e. )(),,( yftyxf = .  You can convince 
yourself that if we had a driven oscillator, g would be an explicit function of x, y, and t, while f would be 
unchanged.  In the exercise P9, below, you will use the Runge-Kutta method to simulate the motion of a 
damped harmonic oscillator 



 
 
 

 
 
Exercise 
 
 
(P9, 10 pts.)  The damped oscillator.   Write a MATLAB program to implement the Runge-Kutta method 
to simulate the motion of a mass-on-a-spring, with spring constant k = 0.1 N/m, mass m = 1.0 kg, and 
damping coefficient b = 0.03 N s / m.  Use the initial conditions ( 0) 6tx = = m, and ( 0) 0tx = = m/s.  Plot x vs. 

t over a time interval equal to 10 T, with Δt = T/25, where T is the period of the undamped oscillator (i.e. 2 
π/ω0).  Use symbols (e.g. circles, with plot(t,x,’o’)) to plot the data.  (8 pts.) On the same plot, graph the 
analytic solution to x(t) – see Problem Set 4, or its solution set, or both, in which this is calculated. (2 pts.) 
 Turn in your plot.  (You don’t need to turn in the MATLAB code, though you can if you want.) 
   
Hints / Comments: 
 Unlike the Verlet assignment, I’m not providing a “ready-made” MATLAB program.  You’ll have to 
figure out how to write your own.  I’ll show you some fragments of my program (below) which may be of 
help.  Also: Future assignments will make use of this Runge-Kutta algorithm.  Don’t panic, however, if you’re 
unable to successfully write your program; I’ll supply the “solution” to this exercise after it’s due. 
 

[... lines omitted...] 
gamma = b/m; 
w0 = sqrt(k/m); 
[... lines omitted, calculating Deltat, Tfinal, etc. ...] 
% Initial conditions 
x(1) = 6.0;  % initial position, meters 
y(1) = 0.0;  % initial velocity, m/s 
t(1) = 0.0;  % initial time, seconds 
[in the “for” loop] 
    t(j) = Deltat*(j-1);   
    kn1 = y(j-1); 
    [... lines omitted, calculating ln1, kn2, ln2, etc...] 
    kn4 = y(j-1) + Deltat*ln3; 
    x(j) = x(j-1) + (Deltat/6.0)*(kn1 + 2*kn2 + 2*kn3 + kn4); 
    [... lines omitted...] 

     
 
(P10, 7 pts.)  Error.   Modify your program to calculate the error in the numerical calculation, defined as the 
mean-square-deviation of the numerical solution x(t) from the analytic solution xa(t), i.e. 

( )22 ( ) ( )ax t x tχ = − .  (The symbol χ is “chi,” and χ2 is the typical measure of error or uncertainty in 

many sorts of analyses.)  Evaluate χ2 for several values of Δt, and determine, e.g. by plotting both on a log-log 
plot, how χ2 depends on Δt.  (In other words, is χ2 proportional to Δt, Δt 5, Δt 6, ... ?)  Read the following note! 
Note:  Exercise P10 is “above and beyond” the goals of this handout.  I’m assigning it so that those “breezing through” the 
assignment will have something to ponder.  Recall from the syllabus how these programming assignments are graded – not doing 
P10 will very likely have zero impact on your grade.  Moreover, I won’t be at all disappointed if you don’t do P10.  Really.  I 
don’t mind at all.  Go study other things, or take a good nap. 


